Medium
You are given an array of variable pairs equations
and an array of real numbers values
, where equations[i] = [Ai, Bi]
and values[i]
represent the equation Ai / Bi = values[i]
. Each Ai
or Bi
is a string that represents a single variable.
You are also given some queries
, where queries[j] = [Cj, Dj]
represents the jth
query where you must find the answer for Cj / Dj = ?
.
Return the answers to all queries. If a single answer cannot be determined, return -1.0
.
Note: The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.
Example 1:
Input: equations = [[“a”,”b”],[“b”,”c”]], values = [2.0,3.0], queries = [[“a”,”c”],[“b”,”a”],[“a”,”e”],[“a”,”a”],[“x”,”x”]]
Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]
Explanation:
Given: a / b = 2.0, b / c = 3.0
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
return: [6.0, 0.5, -1.0, 1.0, -1.0 ]
Example 2:
Input: equations = [[“a”,”b”],[“b”,”c”],[“bc”,”cd”]], values = [1.5,2.5,5.0], queries = [[“a”,”c”],[“c”,”b”],[“bc”,”cd”],[“cd”,”bc”]]
Output: [3.75000,0.40000,5.00000,0.20000]
Example 3:
Input: equations = [[“a”,”b”]], values = [0.5], queries = [[“a”,”b”],[“b”,”a”],[“a”,”c”],[“x”,”y”]]
Output: [0.50000,2.00000,-1.00000,-1.00000]
Constraints:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj
consist of lower case English letters and digits.using System;
using System.Collections.Generic;
public class Solution {
private Dictionary<string, string> root;
private Dictionary<string, double> rate;
public double[] CalcEquation(
IList<IList<string>> equations, double[] values, IList<IList<string>> queries) {
root = new Dictionary<string, string>();
rate = new Dictionary<string, double>();
int n = equations.Count;
foreach (var equation in equations) {
string x = equation[0];
string y = equation[1];
root[x] = x;
root[y] = y;
rate[x] = 1.0;
rate[y] = 1.0;
}
for (int i = 0; i < n; ++i) {
string x = equations[i][0];
string y = equations[i][1];
union(x, y, values[i]);
}
double[] result = new double[queries.Count];
for (int i = 0; i < queries.Count; ++i) {
string x = queries[i][0];
string y = queries[i][1];
if (!root.ContainsKey(x) || !root.ContainsKey(y)) {
result[i] = -1;
continue;
}
string rootX = findRoot(x, x, 1.0);
string rootY = findRoot(y, y, 1.0);
result[i] = rootX.Equals(rootY) ? rate[x] / rate[y] : -1.0;
}
return result;
}
private void union(string x, string y, double v) {
string rootX = findRoot(x, x, 1.0);
string rootY = findRoot(y, y, 1.0);
root[rootX] = rootY;
double r1 = rate[x];
double r2 = rate[y];
rate[rootX] = v * r2 / r1;
}
private string findRoot(string originalX, string x, double r) {
if (root[x].Equals(x)) {
root[originalX] = x;
rate[originalX] = r * rate[x];
return x;
}
return findRoot(originalX, root[x], r * rate[x]);
}
}